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Abstract. We calculate the scattering rates for intrasubband and intersubband transitions
in GaAs-AlAs quantum wells due to interface phonons with an applied longitudinal
electric field. The electron—interface-phonon (Frohlich) Hamiltonian used is that obtained
from the Fuchs-Kliewer slab model, and the electron envelope wavelunction under the
influence of an electric field parallel 1o the growth direction is obtained by a variational
method. The usual selection rules for these transitions break down and the scattering
rates are found to increase significantly when an electric field is applied. These scattering
rates may even become the dominant scattering mechanism for large quantum wells and
sufficiently high fields. We observe also that this change in scattering rates has an
important dependence on the interface-phonon dispersion.

1. Introduction

Interface-phonon modes in quantum wells and superlattices has become a subject
of great interest in the past few years. Together with confined phonon modes they
form the phonon modes which arise from the introduction of low dimensionality in
semiconductor physics. The phonon modes were observed experimentally and their
existence is well accepted. Sood ef af [1)], in 1985, observed interface (IF) phonons in
GaAs—AlAs superlattices in Raman scattering mcasurements. Interface phonons in
GaAs—-AlGaAs superiattices were observed by Lambin ef «f [2] using high-resolution
electron-energy-ioss spectroscopy. Maciel et af [3], and Arora ef af [4] observed GaAs
confined and interface phonons, also in GaAs—AlGaAs saperlattices, using resonant
Raman scattering techniques. There are several papers on short-period GaAs-AlAs
superlattices [S] and GaSb-AlSb strained-layer superlattices [6].

The influence of an electric field on the scattering rates due to electron-phonon
(Fr6hlich) interaction is of great practical interest, especially for the understanding
of electrical transport properties in quantum wells such as phonon-assisted tunnelling
[7]. Another important mechanism, apparently mediated by phonons, is the sweep-out
of carriers in multiple quantum wells [8].

Ferreira and Bastard [9] have presented results using bulk phonons in single and
double ows under the influence of an electric field. Goodnick et @l [10] used an
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ensemble Monte Carlo simulation to study relaxation in coupled ows. Tang o al
[11] calculated the resonant Raman profiles for superlattices using the Huang and
Zhu model [12] and found that the phonon parity selection rules break down when
an electric field is applied. Recently, Turley and Teitsworth {13, 14] presented a
numerical calculation of electron—confined-phonon {13} and electron-IF-phonon [14]
matrix elements in order to obtain resonant tunnelling currents. We have presented
a calculation of scattering rates due to confined-phonon modes in quantum wells
subjected to a longitudinal electric field [15]. We made a comparative study of the
several dielectric continuum theory models currently under debate and found that
the use of an electric field enhances the differences between the various models. For
a more detailed discussion of the theories of confined-phonon modes we refer the
reader to the excellent review by Menéndez [16]. Other reviews of interest are by
Klein [17] and Cardona [18].

In this paper we present a calculation of scattering rates due to IF phonons in
single quantum wells under the influence of an applied longitudinal electric field. We
use the Hamiltonian as derived by Mori and Ando [19] and the electron wavefunctions
are obtained by a variational approach as proposed by Bastard et al [20]. We show
also results of scattering rates due to confined phonons (modified Huang and Zhu
model) for GaAs—-AlAs quantum wells and compare them with results for I phonons.
The scattering rates for confined phonons in these structures were obtained as in [15].

The paper is organized as follows, section 2 presents the Hamiltonian of the
electron-1F-phonon interaction and the variational method which leads to the electron
wavefunction under the influence of an electric field. In section 3 we present and
discuss our results and in section 4 we draw our conclusions. In appendix A we
present the analytical equations of the form factors for IF phonons.

2. Theory

For the description of the ¢lectron-iF-phonon Hamiltonian we follow strictly the work
by Mori and Ando [19], which is largely equivalent to other descriptions such as those
in Licari and Evrard [21], and Lassnig [22].

It is agreed {4, 23] that the iIF phonons are reasonably well described within the
framework of the siab model. As opposed to the confined-phonon modes in the
slab model, the IF phonons are not dispersionless: two modes of different parity are
identified as symmetric and antisymmetric modes, and for each of these modes there
are two modes of different frequency for an interface like GaAs-AlAs. The energy
dispersion with the parallel component of the phonon wavevector is given as [19]

ew(w) tanh(q" L/2)y 4 eg(w) =0 (2.1a)
ew(w) C()th(q“ Lf2) 4+ eg{w) =0 (2.1b)

where equation (2.1a) ((2.1b)) is for symmetric (antisymmetric) modes, and ey(w)
(eg(w)) is the dielectric function of the well (barrier). Solving equations (2.1a, b) for
a GaAs-AlAs Qw we obtain two solutions for each parity, one with frequencies lying
in the limit of GaAs bulk phonon frequencies and the other in the limit of AlAs bulk
TO (transverse optical) and LO (longitudinal optical) phonon frequencies, therefore
frequently referred to as GaAs-like and AlAs-like IF-phonon modes, respectively.
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The electron-phonon Hamiltonian for IF phonons is [19]

Wo € v clanTi
Hou =3 | 5| Faulahale) o [ag,(g) + al,u(—q)] 22)
I

where w,, , is the IF phonon frequency, gy is the parallel component of the phonon
wavevector, and @, and af , are phonon creation and annihilation operators. The
subscript o refers to the parity (S or A, signifying symmetric or antisymmetric
respectively) and p to the possible solutions of equations (2.1a, b), in our case
to GaAs- and AlAs-like modes.

We also define the auxiliary functions

B(w) = ( c —L) wioy ( w? = o, )2 @.3)

€oom  Etm w? ‘-"IZ,Om - WIom
and
Fsu(ay) = [8§ (ws,,) tanh(qy £/2) + 85" (ws, )] ™" (2.4a)
Fan(q)) = 18w (wa,) coth(ay L/2) + Bl (wa, )] (2.4b)

where m may be B (barrier) or W (well), ¢, and €, are the static and high-
frequency dielectric constants, respectively.
The z-dependent part of the Hamiltonian is given by

et {z+L/2) 2 -LJ2

hs(qy, =) = { cosh(gyz)/cosh(q L/2) lz| < L/2 (2.5a)
e—q(z-L/2) x> L/2
e—Tz-L/2) 22 L)2

For the description of the electron envelope wavefunction of the ith confined
subband we use a variational method proposed by Bastard et al [20], instead of
an exact solution expressed in terms of Airy functions. It i well known that
the variational approach yields excellent results [24] and is more suitable for the
calculation of intra- and intersubband transition matrix elements because all integrals
can be carried out analytically.

Assuming the usual effective-mass approximation for the conduction band and
a finite barrier height Vj, the envelope wavefunction for the electron in the ith
conduction subband is [20]

af explkg; (z + L/2)}e™?* z<~L/2
$i(2) = b; q sin(ky;z + §;)e77 z|< Lj2 (2.6)
oF exp[—kp; (= ~ L/2)]e™ "> zz L/2
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where

kg = [2m"(V, - EDV2/B ky; = (2m* ED)V )
with E? being the :th unperturbed energy level, and

ot =sin (§; £ ky; L/2) (2.8)

b; is a normalization constant, and 3 is the variational parameter. For the first two
subbands the values of &, are §; = = /2 and é, = 0. For simplicity, the effective mass
m* of the barrier is assumed to be the same as that of the well. In order to obtain
the energy levels with an applied electric field we evaluate the matrix elements of the
Hamiltonian,

Hy= —(B/2m*)(8%*/822) + V(2) + |e| Fz (2.9)

where V(z) is the finite Qw potential and F the strength of the applied electric
field. Finally, the energy levels E,(F,3) = (i,|Hyl;} are minimized numerically
with respect to the variational parameter 3 [20].

The scattering rates for the emission of a IF phonon with energy fiw,, are
obtained from the usual Fermi golden rule

WD (k) = 7 [ 88 - & = o DI Hok)PON, @10)
where £ is the total electron energy, i.e.

£ = Wk /2m* + F*KZ [2m" = Rkj[2m" + E. (2.11)

Evaluating the matrix element in equation (2.10) with the Hamiltonian given by
equation (2.2) we obtain the expression for the scattering rates,

W0(Q) = (8m” /4r) (way fu, / NN, + DIGEO Q)P 212)

where G(‘_‘f)(Q) is the overlap integral of the electron wavelunction and the z-
dependent part of the electron—IF-phonon Hamiltonian,

0@ = [ vl halay ey 213)

For details on the analytical form of equation (2.13) see appendix A. For intrasubband
(1 — 1) transitions, such that the electron has initially just enough energy to emit
one phonon with frequency w, ., ¢ is given as

= [2m"w,, (q))/W)"? (2.144)

and for intersubband (2 — 1) transitions

Q= {Zm*[E]- - E;— l‘iwcw(q”)]/ﬁ}li2 (2.14b)

where we take the electron to be initially at the bottom of the second subband. Notice
that we are not neglecting the phonon dispersion for the calculation of scattering rates
as was done by Rudin and Reinecke [25]; the appropriate values of w, , and ¢, are
calculated for each case.
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3. Results and discussion

For the calculation of scattering rates due to IF phonons we assume always a GaAs—
AlAs QW with a finite barrier of 1 eV. The material parameters used in our calculations
are: for GaAs, the cffective mass m* = 0.0665, the dielectric constants ¢, = 12.35
and ¢, = 10.48, the bulk phonon energies hw; o = 36.8 meV and fwr, = 34.0 meV;
for AlAs, the effective mass is assumed to be the same as for GaAs, the dielectric
constants €, = 10.0 and ¢, = 8.16, the bulk phonon energies fiw; 5 = 47.7 meV and
huwro = 44.0 meV.

Intrasubband Trausition (1 — 1}
2 T T T

Figure 1. Intrasubband (1 — 1) scattering rates due
to F phonons in a GaAs-AlAs quantum well, as
a function of the quantum well width L. The fuil
curve is for an electric field of 100 kV cm™!, the
long broken curve is for 50 kV cm=! and the short
broken curve is for the absence of an electric field.
The indication ‘GaAs’ {*AlAs™) stands for GaAs-like
(AlAs-like) IF-phonon modes.

In figure 1 we show the scattering rates for intrasubband transitions (1 — 1)
due to IF phonons in GaAs—AlAs Qws a uniform electric field of 50 kV cm~!, 100
kV cm~! and in the absence of an electric field. Note that the antisymmetric IF
modes now contribute to the scattering and these scattering rates become significant
for large Qws (about 200 A), as opposed to the rate without an applied electric field.

Intersubband (2 — 1) transitions rates, shown in figure 2, present a much stronger
dependence with the applied electric field (50 kV cm~!') than intrasubband scattering
rates, although significant changes to the zero-field cases are observed only for Qws
larger than 100 A. Now the contribution from the previously inactive symmetric
modes not only increases with increasing electric field but also the scattering rate due
to symmetric AlAs-like mode becomes even higher than the scattering rates due to the
antisymmetric AlAs-like mode. We observe a maximum scattering rate of 15.6 ps—!
(off scale in figure 2 for a QW of 158 A, which corresponds to a scattering time of 64
fs.

In general, the scattering rates due to IF modes increase with the strength of the
applied electric field. This is in contrast to confined phonons where the intrasubband
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Intersubband Transition (2 — 1)
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Figure 2. Intersubband (2 — !) scattering rates  Figore 3. Intrasubband (1 — 1) scattering rates

due to IF phonons in a GaAs—AlAs quantum well,
as a function of the quantum well width L. The full
curve is for an electric field of 50 kV cm~—! and the
broken curve is for the absence of an electric field.
The indication ‘GaAs’ (‘AlAs’) stands for GaAs-
like (AlAs-like) IF-phonon modes. The subscripts S
and A signify symmeinc and antisymmetric modes,
respectively. The scattering rate for the symmetric
AlAs-tike mode reaches a maximum of 15.6 ps~!

due to (F phonons in a GaAs-AlAs quantum well
of L = 150 A, as a function of the applied
longitudinal electric field F'. For comparison, we
also show the scattering rates due to confined
phonons (broken curve; modified Huang and Zhu
model) calculated as in [15]. Notice that the
scales for IF and confined phonoens are different but
proportional in order to compare the variation with
the electric field directly. The indication ‘GaAs’

(off scale in the figure) for a ow of 158 A (‘AlAs”) stands for GaAs-like (AlAs-like) IF phonon

modes.

scattering rates decrease, whereas the intersubband rates increase with the electric
field.

In figure 3 we show the electric-field dependence of the intrasubband (1 — 1)
scattering rates for a GaAs-AlAs QW of 150 A, ie. large enough to observe significant
changes in scattering rates. Above 50 kV cm~! the increase in scattering rates is
almost linear with respect to the electric-field strength. In this figure we included
the scattering rates due to GaAs confined-phonon modes (modified Huang and Zhu
model [12, 25]) calculated as in [15].

For the intersubband (2 — 1) transitions, shown in figure 4 as a function of
the electric field, we notice that the symmetric modes (which are inactive at zero
electric field) present stronger variations with the electric field than their respective
antisymmetric modes. In figure 4(b) we observe the very interesting case of the
scattering rate due to AlAs-like symmetric modes becoming higher than the rates due
to confined modes in Qws of 150 A at fields stronger than 50 kV cm~! and reaching
a maximum of 34 ps—! (off scale in figure 4(b)) at a field of 84 kV cm~!, This
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Figure 4 Intersubband (2 — 1) scattering rates due to IF phonons in a GaAs-AlAs
aw of (@) L = 100 A and () L = 150 A, as a function of the applied longitudinal
electric field F. For comparison, we show the scattering rates due to confined phonons
(broken curve; modified Huang and Zhu model) caiculated as in [15]. In part (&) the
scattering rate for the symmetric AlAs-like mode has a maximum of 34 ps—! (off scale
in the figure} at an electric field of 84 kV cm—'. The indication ‘GaAs’ {‘AlAs’) stands
for GaAs-like (AlAs-like) 1F-phonon modes.

corresponds to a maximum scattering time of = 30 fs.

This effect should be observable in cxperimental measurements, especially those
involving time-resolved optical techniques [26-29]. This is a promising propect;
calculations of electron—phonon scattering rates using the dielectric continuum model
seem to be sufficiently accurate, despite obvious limitations, and they reproduce
experimental measurements quite well {30, 31).

In figure 5 we show the IF phonon energies obtained for the Jowest possible
@ (see equation (2.14b)) in an intersubband transition as a function of the width
of the Qw, which were used for the calculation of the scattering rates presented
in figure 2. These results show a non-negligible shift in energy of the AlAs-like
modes for sufficiently large Qws. The largest shift is for 2 QW of 158 A, where a
shift in AlAs-like symmetric modes of about 0.6 meV was calculated. Although this
shift will depend also on the electron excess energy (we are always using the lowest
possible energy for an intersubband transition), these results suggest an experimentally
observable energy shift caused by a longitudinal electric field. Note that the fast
decrease of the IF phonon energy for AlAs-like antisymmetric modes explains the
peak in the intersubband scattering rates (figure 2) for large ows, as the scattering
rate is proportional to the phonon energy (see equation (2.12)).

So far we have presented our results for the scattering rates due to IF phonon
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Intersubband Transition (2 — 1}

47 T T T T T
- AlAs-like modes

symmelric

fiw (meV)

syuaeliic

5 180 154
L (A)

Figure 5. [F-phonon energies as functions of the QW
width L, as used for the calculation of intersubband
(2 — 1) transition scattering tates in figure 2. The
full curve is for an electric field of 50 kv em—!
and the broken curve is for the absence of an
clectric ficld. The zero-electric field symmetric

200

z (4)

Figure 6. The z-dependeni pant of the electron—
IF-phonon Hamiltonian (equations (2.5a, b)), as
a function of the position in a ow of [00 A.
Full curves are for intrasubband transitions with
9 L = 2.5, and broken curves are for intersubband

transitions with q"L =4
frequencies are shown only for comparison, they are

otherwise meaningless as there are no intersubband

transitions due to symietric F-phonon modes in

the absence of an electric field, Although IF modes

al larger qws arc possible, we show only those who

participate in the intersubband transitions satistying

energy conservation.

modes in Qws subjected to an electric field, yet it remains to be understood why
the intrasubband (1 — 1) scattering rates yield a relatively small variation. One
might expect a more pronounced change in these scattering rates if we follow similar
considerations as for confined modes [15]. In figure 6 we show the z-dependent part
of the electron—iF-phonon Hamiltonian for a Qw of 100 A. It is apparent from this
figure that there is a strong dependence on the phonon wavevector; for intrasubband
transitions a typical value is gy L = 2.5 and for intersubband transitions ¢y L = 4. For
intersubband (2 — 1) transitions the z-dependent part of the Hamiltonian is much
more localized towards the interfaces and therefore more sensitive to the electric
field; the variation relative to the intrasubband transitions is morc pronounced for
the symmetric modes. It can therefore be expected that the scattering rates due to
symmetric IF modes present the largest variation with electric field for intersubband
transitions and this is exactly the behaviour observed in our results (see figures 2
and 4).
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Figure 7. Overlap of the z-dependent part of the electron—iF-phonon Hamiltonian and
the electric-field-dependent electron wavefunctions (integrand of equation (2.13)) as a
function of the position in a8 ow of 100 A The upper (lower) figure is for intrasubband
(intersubband) transitions. The full curve is for an electrie field of 50 kV em™! and the
broken curve is for the absence of an electric field. The remaining parameters are the
same as for figure 6. The indications ‘symmetric’ and ‘antisymmetric’ refer to the parity
of the z-dependent part of the electron-iF-phonon Hamiltonian.

Going further, we show in figure 7 the overlap of the electronic wavefunctions
and the »-dependent part of the Hamiltonian which shows clearly that the integral
of the overlap, ie. GE.':”(Q), will not be very sensitive to the electric ficld for
intrasubband transitions. In contrast, for intersubband transitions the effect is much
more pronounced for symmetric [F-phonon modes than for antisymmetric modes.

Another consequence which results from the inspection of figures 6 and 7 is
that the scattering rates have a strong dependence on the IF-phonon dispersion.
Therefore, simply replacing g L by an asymptotic value of ~ 3 as proposed by Rudin
and Reinecke [25] would not be appropriate.

4, Conclusions

We have presented a calculation of scattering rates for intrasubband and intersubband
transitions mediated by iF-phonon modes in QWs, when subjected to a longitudinal
electric field. It is found that the usual selection rules break down and that the
scattering rates always increase with the applied electric ficld, in contrast to scattering
rates due 10 confined-phonon modes which decrease for intrasubband transitions [15].
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In particular we found very high intersubband scattering rates for large Qw
which becomes the dominant scattering mechanism at sufficiently large Qws. We
may conclude that in applying a longitudinal electric field to large QWs it may be
possible to achieve scattering times which are up to one order of magnitude faster.
This certainly has important consequences for device applications where the electron-
phonon interaction is an important mechanism.

Although specific experimental measurements on this subject are, to the best
of our knowledge, not yet available, we hope that our calculations may motivate

experimental studies on electron—phonon interaction in QWs subjected to longitudinal
electric fields.
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Appendix A. Form factors for IF phonons

We define the auxiliary functions
9:(8) = {L[~(BL — L /2) sin kyy L cosh(SL — g L/2)
+ kwy L oos kyy Lsinh(BL - qL/2)(BL - g L/2)* + (kwy L)Y
(A1)
ha(B) = {LI-(AL + q L/2) sin kyy L cosh(BL + q L./2)
+ ks L cos kyy Lsinh(8L+qqL/2)IH(BL+ qyL/2)* + (kywy L)
(A2)
iy (B) ={L[(BL — qyL/2)cos by, Lsinh(FL — q;L/2)
+ kyy Lsin kyy Leosh(BL+qyL/2)}}(BL— ayL/2)* + (kyy L)
(A3)
34 (B) ={L[(BL + qyL/2)cos kyy Lsinh(SL + ¢ L/2)
+ kg L sin kyyy Loosh(BL+q L)AL+ aqyL/2)* + (kwy L£)7]7!
(Ad)
ks = (kw £ kw;) /2 5, = (6 6)/2. (A5)
The form factor as obtained from equation (2.13) is
E (a=)2efL + £ (at)ePL
2 (kgL —BL+qyL/2) * Z (kgL + BL+ qyL72)

G Q) = v (

1 M 3 .
¥ Foosh g L2 2520508 + ha) F 00826, (i + ai)l) (A6)



Inter- and inirasubband transitions in quantum wells 9841

for symmetric IF-phonon modes, and

L (o™ )2ePL + L (at)le AL

@) = (

1
* Fcosh q L/2 ;[“i“%(gi —hy)Foos2é, (i, ~ ji)]) (AT

for antisymmetric modes. For intra- and intersubband transitions @ is given by
equations (2.14a) and (2.14b), respectively.
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